p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.51C22≀C2, (C2×D4).262D4, C24.28(C2×C4), (C23×C4).20C4, (C2×Q8).205D4, (C22×D4).28C4, (C22×C4).261D4, C24.4C4⋊24C2, C2.10(C24⋊3C4), C23.30(C22⋊C4), C23.184(C22×C4), (C23×C4).230C22, (C22×C4).655C23, (C22×D4).451C22, (C22×Q8).379C22, (C2×M4(2)).148C22, C2.22(M4(2).8C22), (C2×C4).226(C2×D4), (C2×C4.D4)⋊14C2, (C22×C4○D4).3C2, (C2×C4.10D4)⋊14C2, (C2×C4).43(C22⋊C4), (C22×C4).441(C2×C4), C22.32(C2×C22⋊C4), SmallGroup(128,517)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C23×C4).C4
G = < a,b,c,d,e | a2=b2=c2=d4=1, e4=d2, ab=ba, ac=ca, ad=da, eae-1=ad2, bc=cb, ede-1=bd=db, be=eb, cd=dc, ece-1=acd2 >
Subgroups: 580 in 292 conjugacy classes, 68 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C22⋊C8, C4.D4, C4.10D4, C2×M4(2), C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C24.4C4, C2×C4.D4, C2×C4.10D4, C22×C4○D4, (C23×C4).C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C22≀C2, C24⋊3C4, M4(2).8C22, (C23×C4).C4
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(26 30)(28 32)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(2 6)(3 7)(11 15)(12 16)(17 21)(20 24)(25 29)(28 32)
(1 10 5 14)(2 24 6 20)(3 12 7 16)(4 18 8 22)(9 26 13 30)(11 28 15 32)(17 29 21 25)(19 31 23 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (2,6)(3,7)(11,15)(12,16)(17,21)(20,24)(25,29)(28,32), (1,10,5,14)(2,24,6,20)(3,12,7,16)(4,18,8,22)(9,26,13,30)(11,28,15,32)(17,29,21,25)(19,31,23,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (2,6)(3,7)(11,15)(12,16)(17,21)(20,24)(25,29)(28,32), (1,10,5,14)(2,24,6,20)(3,12,7,16)(4,18,8,22)(9,26,13,30)(11,28,15,32)(17,29,21,25)(19,31,23,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(26,30),(28,32)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(2,6),(3,7),(11,15),(12,16),(17,21),(20,24),(25,29),(28,32)], [(1,10,5,14),(2,24,6,20),(3,12,7,16),(4,18,8,22),(9,26,13,30),(11,28,15,32),(17,29,21,25),(19,31,23,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D4 | M4(2).8C22 |
kernel | (C23×C4).C4 | C24.4C4 | C2×C4.D4 | C2×C4.10D4 | C22×C4○D4 | C23×C4 | C22×D4 | C22×C4 | C2×D4 | C2×Q8 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 4 | 4 | 4 | 4 | 4 | 4 |
Matrix representation of (C23×C4).C4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
(C23×C4).C4 in GAP, Magma, Sage, TeX
(C_2^3\times C_4).C_4
% in TeX
G:=Group("(C2^3xC4).C4");
// GroupNames label
G:=SmallGroup(128,517);
// by ID
G=gap.SmallGroup(128,517);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,352,2019,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^4=d^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*d^2,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a*c*d^2>;
// generators/relations